O plano tangente $P$ e a reta $r$ normal à superfície $\frac{x^2}{4}+\frac{y^2}{9}-\frac{z^2}{16}=1$ no ponto $(2,3,4)$ são respectivamente:
a) $x/2+y/3-z/4=1$ e $r:$ $x=8+6t,y=7+4t,z=1-3t$
b) $6x+4y-3z=1$ e $r:$ $x=2+1/2t,y=3+1/3t,z=1-3t$
c) $x+y-z=12$ e $r:$ $x=2+6t,y=3+4t,z=4-3t$
d) $x/2+y/3-z/4=12$ e $r:$ $x=2+6t,y=3+4t,z=4-3t$
e) $x/2+y/3-z/4=1$ e $r:$ $x=1+6t,y=2+4t,z=1-3t$